Tag Archives: medieval city

The Journey to Emergence

This is part I of a series of excerpts of an article to be published in the International Journal of Architectural Research entitled The Principles of Emergent Urbanism. Additional parts will be posted on this blog with the editor’s permission until the complete article appears exclusively in the journal’s upcoming issue.

Of the different domains of design urban design is an oddity. While the design of a machine can be traced to a definite, deliberate act of invention, and even the design of buildings (architecture) is rooted in known production processes, the design of cities was never seriously attempted until well after cities had become a normal, ordinary aspect of civilized living, and while the design of machines and buildings was a conscious effort to solve a particular problem or set of problems, cities appeared in the landscape spontaneously and without conscious effort. This places the efficacy of urban design in doubt. The designers of machines and buildings know fully how the processes that realize their design operate, and this knowledge allows them to predictably conceive the form they are designing. Urban designers do not enjoy such a certainty.

How is it possible for what is obviously a human artifact to arise as if by an act of nature? The theory of a spontaneous order provides an explanation. According to Friedrich A. von Hayek (Hayek, 1973) a spontaneous order arises when multiple actors spontaneously adopt a set of actions that provides them with a competitive advantage, and this behavior creates a pattern that is self-sustaining, attracting more actors and growing the pattern. This takes place without any of the actors being conscious of the creation of this pattern at an individual level. The spontaneous order is a by-product of individuals acting in pursuit of some other end.

In this way cities appear as agglomerations of individually initiated buildings along natural paths of movement, which originally do not require any act of production as dirt paths suffice. As the construction of individual buildings continues the most intensely used natural paths of movement acquire an importance that makes them unbuildable and these paths eventually form the familiar “organic” pattern of streets seen in medieval cities. This process still takes place today in areas where government is weak or dysfunctional, notably in Africa where urban planning often consists of catching up to spontaneous settlement, and in the infamous squatter slums that have proliferated in the 20th century.

transect-of-tultepec

A transect of the city of Tultepec in Mexico provides a snapshot of the different phases of spontaneous urban growth. (Google Earth image)

As urbanization becomes denser, the increasing proximity of concurrent, competing individual interests causes conflicts between the inhabitants of the emerging town. Individuals build out their properties in such a way that it interferes with others, for example by blocking paths or views. These acts threaten the sustainability of the spontaneous order, and to resolve this situation the parties involved appeal to the same judges that rule on matters of justice. These judges, again according to Hayek, are required to restore and preserve the spontaneous order with their rulings. These rulings provide the first building regulations and, when government authority becomes powerful enough to do so, are compiled into comprehensive building codes to be applied wherever the force of that government extends. (Hakim, 2001)

The compiled building codes are later brought by colonists to create new settlements, reproducing the morphology across multiple towns but each time in a pattern that is adapted to the local context. Early town planning efforts are attempts at regularizing the building codes in order to plan for long-term organization of cities, but maintain the spontaneous production process. Most notably the rapid urbanization of New York City was accomplished by very simple rules on the size of blocks laid out in the 1811 Commissioners Plan for New York. Unlike the experience of urbanization in previous centuries, where urban growth was slow and often stagnant, the urbanization of New York took place in a time of rapid social and economic changes, and the city government had to invent building codes involving issues that never could arise in a pre-capitalist society: first the tenement, then the skyscraper, and ultimately, the automobile.

Modernism: the replacement for the spontaneous order

Architects and urban planners of the early 20th century, confident in the techniques of engineering and industrial production, believed that the spontaneous city had become irrational and had to be replaced with a new design fully integrating new industrial technology. The Swiss architect Le Corbusier is famous for designing a complete city around the automobile and building models of his design. In so doing he adopted a process of urbanization that was completely planned hierarchically, applying the processes familiar to architects at the scale of an entire city. He also ridiculed the morphology of spontaneous cities as being the product of donkey-paths.

villa-radieuse

This scale model of Le Corbusier’s Plan Voisin marks the turning point where city plans as constraints on individual initiative are replaced with architectural design at the scale of millions of inhabitants. (Le Corbusier, 1964)

Although the architectural program of high-rise living of Le Corbusier was discovered to be a colossal failure, the modernist process of development replaced spontaneous urbanization in the industrialized world. The housing subdivision substituted adequately for the high-rise tower block, providing affordable housing in large numbers to a war-impoverished society. This production process is still in force today, separating cities into three distinct zones: residential subdivisions, industrial and office parks, and commercial strips.

Modern city planning has been successful at its stated objective, producing a city designed specifically around automobile use, yet it was immediately and has been perpetually the target of criticisms. Most significantly the vocabulary of these criticisms had to be invented in order to spell out the critics’ thoughts because the type of deficiency they were observing had never been seen. Words like placeless or cookie-cutter were invoked but fell on the deaf ears of urban planners who were trained in Cartesian processes and industrial production techniques.

The most devastating criticism of modernist urban planning came in the form of a sociological study and personal defense of the spontaneous city, the book Death and Life of Great American Cities by Jane Jacobs. (Jacobs, 1961) In it she described in great details how the functions of a spontaneous city related and supported each other. Her concluding chapter, the kind of problem a city is, is still the most relevant. In it she attacks the scientific foundations of urban planning at a paradigmatic level, and claims that the methodology of the life sciences, at the time undergoing the revolution created by the discovery of DNA, is the correct approach to studying cities.

Death and Life of Great American Cities has been adopted by contemporary urban planners as a textbook for urbanity. Its descriptions of the characteristics of a city are now the models upon which new developments are planned. The old urban development of housing subdivisions and office parks is being substituted for the new urban development that has streets, blocks, and mixed uses, just as Jacobs had described to be characteristic of life in the city. A major difference between Jane Jacobs’ preferred city and the new urban plans remains. The layout of mixed uses is organized and planned in the same process as Le Corbusier planned his city designs. The scientific suggestions of Jacobs have been ignored.

The discovery of emergence and complexity science

In the time since Jacobs published her attack on planning science molecular biology has made great technological achievements and provided countless insights into the morphology of life. In parallel the computer revolution has transformed the technology of every human activity, including that of design. But the computer revolution brought along some paradigm-altering discoveries along with its powerful technology. In geometry, the sudden abundance of computing power made it possible for Benoit Mandelbrot to investigate recursive functions and his discovery, fractal geometry, generated a universe of patterns that occurred in many aspects of the physical universe as well as living organisms. (Mandelbrot, 1986)

Some thinkers saw that the life sciences were part of a much more general scientific domain. They formed the Santa Fe Institute and under the label complexity studied not only organisms but also groups of organisms, weather systems, abstract computational systems and social systems. This research formed a body of theory called complexity science that has resulted in the creation of similar research institutes in many other places, including some centers dedicated specifically to urban complexity.

Their scientific revolution culminated in two major treatises within the last decade, both from physicists practicing in a field of complexity. The first was A New Kind of Science by computer scientist and mathematician Stephen Wolfram (Wolfram, 2002), where he presents an alternative scientific method necessary to explore the type of processes that traditional science has failed to explain, presenting a theory of the universe as a computational rule system instead of a mathematical system. The second was The Nature of Order (Alexander, 2004) by architect Christopher Alexander, where he presents a theory of morphogenesis for both natural physical phenomena and human productions.

A definition of emergence

To define what is meant by emergence we will use the abstract computational system upon which Wolfram bases his theories, the cellular automaton. Each cell in a row is an actor, making a decision on its next action based on its state and the states of its direct neighbors (its context). All cells share the same rule set to determine how to do this, that is to say all cells will act the same way with the same context. In this way each row is the product of the actions of the cells in a previous row, forming a feedback loop. The patterns of these rows are not in themselves interesting, but when collected in a sequence and displayed as a two-dimensional matrix, they develop complex structures in this dimension.

rule30

The 30th rule of all possible rules of one-dimensional cellular automata produces a chaotic fractal when displayed as a two-dimensional matrix, but most other rules do not create complex two-dimensional structures. The first line of the matrix is a single cell that multiplies into three cells in the second line in accordance with the transformation rules pictured below the matrix. This process is reiterated for the change from the second to the third line, and so on. All the information necessary to create structures of this complexity is contained within the rules and the matrix-generating process. (Wolfram, 2002)

The same general principle underlies all other emergent processes. In a biological organism a single cell multiplies into exponentially greater number of cells that share the same DNA rules. These cells create structures in a higher dimension, tissues and organs, which form the entire organism. In the insect world complex nests such as termite colonies emerge from the instinctual behavior of individual termites. And in urbanization, buildings form into shopping streets, industrial quarters and residential neighborhoods, themselves overlapping into a single whole system, the city.

References

Alexander, Christopher (2004). ‘The Process of Creating Life’, The Nature of Order Vol. 2, Center for Environmental Structure
Corbusier, Le (1964). La Ville Radieuse. Éléments d’une doctrine d’urbanisme pour l’équipement de la civilisation machiniste, Édition Vincent Fréal et Cie, Paris, France
Hakim, Besim (2001). ‘Julian of Ascalon’s Treatise of Construction and Design Rules from Sixth-Century Palestine,’ Journal of the Society of Architectural Historian, vol. 60 no. 1
Hayek, Friedrich A. (1973). ‘Rules and Order’, Law, Legislation and Liberty Vol. 1, Routledge and Kegan Paul, London and Henley, UK
Jacobs, J. (1961). The Death and Life of Great American Cities, Random House and Vintage Books, New York, USA
Mandelbrot, Benoit (1986). The Fractal Geometry of Nature, W.H. Freeman, New York, USA
Wolfram, Stephen (2002). A New Kind of Science, Wolfram Media, USA

Squaring the circle

tultepec

Natural paths of movement emerge through gaps in the blocks imposed by a municipal grid in the town of Tultepec, Mexico. These paths show how the street configuration of medieval cities comes to be defined. The urbanized gradient between the center of town and its outskirts shows the different stages in the emergence of a fully natural town.

For those with strong stomachs, scroll to the south to see some truly horrific modern housing blocks.

The complex grid

In a medieval-era city the pace of urban growth is slow to a point where the growth of the city is not consciously noticed. Buildings are added sporadically, in random shape and order, as the extremely scarce economic situation makes no other pattern possible. Typically this means that the shape of streets will match the existing natural paths of movement, giving the street network an organic structure that is preserved through successive transformations in the urban fabric.

This works until the street network becomes large enough to become a functional problem. Because it is random, the medieval street network becomes complicated to move around in once the structure exceeds a certain scale. Some people see this as an obstacle to commerce and project to restructure the emergent medieval grid into something more rational. These projects fail for the same economic reasons that shaped the emergence of the medieval streets.

As the pace of urban growth increases and as the cartesian paradigm expands in the 17th and 18th centuries, deliberate city planning through the pre-emptive definition of an urban grid becomes fashionable. The practice of baroque planning remains the privilege of ultra-rich landlords considering the scale of construction involved. (Louis XIV’s Versailles is still the case study.) In the Americas such concentrations of capital do not yet exist. Grids are not truly part of a city plan, they are the outcome of regulations meant to avoid the pitfalls of medieval urban growth. Although the idea of a block is defined, the limiting shape of the grid itself is undefined. This allows cities to grow out, in theory, infinitely.

This works until the grid encounters and existing structure in the landscape. While Europe’s land is already very complex, in America the land is mostly empty. One exception is New York, which has multiple grids expanding towards the center of Manhattan, all with their own alignment with the waterfront. Compounding the medieval streets below Wall Street, the city’s network is getting messy. The solution conceived is the first city plan of New York, the Commissioners’ Plan of 1811, which grids Manhattan in the pattern it is famous for to this day with the help of a concentrated political power. In Europe this much centralization is not available, cities being ringed by a large number of villages that already structure the land. One notable exception is Barcelona, which under conservative military domination had reserved a large non aedificandi zone outside of its defensive walls. With the military out of the picture, and the industrial revolution putting enormous pressure on the city’s growth, the next most famous cartesian grid plan is imposed: the eixample. Adepts of the medieval city such as Camillo Sitte praise its artistic value and quality of life, but fail to truly describe how to reproduce it in the context of accelerating urbanization.

The 19th century is the triumph of the cartesian plan. It is not only employed to plan cities but to plan the entire American landscape. West of the original colonies the map becomes rectilinear. The flexibility and fluidity of New York’s grid plan promotes very rapid land development and the city achieves growth rates never before seen. European city planners are facing the same growth pressure but are trapped by the land’s existing structure, both physical and political. One simple solution is discovered: demolishing city walls and building a high capacity road that encircles the city, the boulevard. If it is to be complicated to get inside a city, it will at least be simple to get around it. Paris builds two on its two successive walls, and Vienna builds the famous Ringstrasse. An interesting phenomenon emerges from subsequent growth. While the boulevards were meant to be restful promenades, they emerge to become important centers on their own due to their attractiveness for traffic. In space syntax terms, they are integrators.

Manhattan’s grid extends to over a hundred streets but starts to suffer from severe scale problems. The medieval street system drives traffic away to boulevards, but in an endless grid traffic goes everywhere, and there is no place that is free of the increasing congestion. With the introduction of the car the endless grid is in crisis. Since no better idea is found, the grid system is replaced with the high-capacity collector road to concentrate all the congestion, from which huge, isolated developments  access each other. This is the suburban sprawl system that remains the norm. It has the advantages of being simple to plan and giving enormous clout to land developers. However people are dissatisfied with the enormous scale of their environment. That they enjoy a single-family home does not sufficiently conceal the fact that they are clustered with thousands of similar homes, and next to those are huge strip malls, office parks and shopping malls that require long vehicle trips to access. The disconnect between their homes and their activities means they live in a form of crowded isolation. The suburbanites escaped congestion only to arrive at emptiness. There is more life in the less populated countryside. Adepts of the metropolitan grid such as Rem Koolhaas praise the culture of congestion as a lifestyle that the collector road fails to create.

This was as briefly stated as I could the modern history of the urban network: one system failing to adapt to the scale of the city, being replaced by a larger system that erases the small scale complexity of the previous only to itself fail at a much larger scale, and then another larger system crushing all complexity to resolve a problem of modernity.

Is there a way that we could have the benefits of all systems balanced as a whole urban network? To describe such a system, we can first define some proscriptions.

  • Any size of urban growth is allowed as long as the new growth extends the boundary of the network. This ensures that the city has the economic flexibility of the medieval city and allows anyone, no matter their economic importance, to contribute to the city’s growth.
  • The network must not become so complicated that it becomes impossible to move around in order to participate in large-scale activities and a culture of congestion.
  • Streets must not grow too long without interruption in such a way that speeding and traffic accidents are encouraged.

How does this work out in terms of prescriptions? It turns out to be very simple. If we assume that we start with a hamlet of a single block, or a regional road that is undeveloped, we need only two rules: one for private development and one for the community.

  • For private development: you may build on any available part of the network so long as you replace the part you used up by extending the network around your new block.
  • For community development: any time a part of the network becomes too complicated (for example it takes more than 4 steps to get out of a sector), extend the boundary of that part with a higher capacity road (a boulevard).

How do we tell if these two rules really do meet the proscriptions we defined? Since we’re talking about an emergent design, the only way to see how it works is to do an explicit simulation of the computations involved. For this I employed a Fibonacci sequence to stand for a random growth process. With each new block that the sequence generated, I placed it in the section of the network that minimized the private cost of extending the boundary. I also used square blocks to simplify the computations involved, and also to demonstrate how such a process would work in a structure of land that has been made square, for better of worse, through cartesian planning. The process would work just as well in a more fluid, rounder land structure such as exists in Europe and the American East.

Stage 1: The village

complex-grid-village

The village is a cluster of houses and small businesses, whose only real challenge is maintaining a facade with the outside by ensuring that every new block also fronts the countryside. This provides the village with a path that everyone can walk around on whenever they want to get some fresh air and open space.

Stage 2: The town

complex-grid-town

The town starts to support development at larger scales with bigger block sizes. The first boulevards are built around the original village, preserving its traditional atmosphere from the growing businesses on the new boulevards.

Stage 3: The city

complex-grid-city

Now a significant regional center, the city’s economic complexity is heralded by the construction of the ring road enclosing the town’s neighborhoods. Large developments such as a regional shopping mall, an airport and a TND line the ring road alongside other smaller blocks of more traditional housing and business that take advantage of the high centrality of the ring and its new culture of congestion, eventually forming whole neighborhoods of their own. The ring road also encloses available green spaces for recreation, making it a parkway in some segments.

Emergent properties of the process

The most interesting outcome is that the structure of the network makes a very nice chaotic fractal, showing the balance between scales in the city’s growth. It is simultaneously simple to grasp and complex, living geometry.

complex-grid-fractal

The spatial integration created by the boulevards and ring roads also promotes the creation of a hierarchy of different centers that are evenly distributed between neighborhoods. Tightly knit residential quarters provide security for children and the elderly, with neighborhood centers within walking distance and no threat of heavy traffic until the edge of the city, liberating citizens from automobile dependency.

Adopting a complex grid is going to benefit small towns and villages most, as their economy is typically not large enough to support the collector road system. It might even result in the emergence of new villages in rural regions that have experienced large-scale urbanization and thus make them more resilient to economic shocks.

For existing cities, history provides a precedent for increasing the grid’s complexity when the problem is scaling up the grid. The urban renovations of Haussmann in Paris or Robert Moses in New York showed how to compose a larger scale within an existing city. (In Moses’ case, how not to do so as well.) However there is no precedent for scaling down a network that is too big, which is what modern cities suffer from. I suspect that contrary to scaling up which requires a strong centralization of power, scaling down involves a decentralization and a multiplicity of new powers transforming neighborhoods, breaking up regional, municipal and even neighborhood authorities such as homeowners’ associations to create local economies.